Take a look at our Google Scholar page
82 Henckel, D.A; Counihan, M.J., Holmes, H.E; Chen, X; Nwabara, U.O.; Verma, S; Rodríguez-López, J.; Kenis, Paul J.A.; Gewirth, Andrew A. Potential Dependence of the Local pH in a CO
2 Reduction Electrolyzer.
ACS Catal. 2021, 11, 1, 255–263
81 Wang, Y; Counihan, M.J.; Lin, J.W.; Rodríguez-López, J.; Yang, H; Lu, Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals.
J. Am. Chem. Soc., 2020, 142, 20368-20379.
80 Kromer, M.L; Simpson, B.H.; Rodríguez-López, J.
Evaluating the impact of catalyst selection and semiconductor band edge on the photoelectrochemical production of
H
2O
2 via a real-time in situ probe.
J. Electroanal. Chem. 2020, 114677.
Developing SECM analysis for electrocatalysis in memory of Prof. A. Wieckowski
79 Hui, J.; Nijamudheen, A.; Sarbapalli, D.; Chang, X.; Qu, Z.; Mendoza-Cortes, J.L.; Rodríguez-López, J.
Nernstian Li
+ intercalation into few-layer graphene and its use for the determination of K
+ co-intercalation processes.
Chem. Sci., 2021, 559-568.
Falling in love with the versatility and speed of these electrodes!
78 Gossage, Z.T.; Guo, F.; Hatfield, K.O.; Martin, T.A.; Tian, Q.; Gao, E.J.; Kumar, A.; Rodríguez-López, J.; Zhao, H.
Reconstruction of Lead Acid Battery Negative Electrodes After Hard Sulfation Using Controlled Chelation Chemistry.
J. Electrochem. Soc. 2020, 167, 120537.
Equilibrium chemistry to the service of refurbishing the most popular battery!
77 Doan, H.A.; Agarwal, G.; Qian, H.; Counihan, M.J.; Rodríguez-López, J.; Moore, J.S.; Assary, R.S.
Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials.
Chem. Mater. 2020, 32, 15, 6338–6346.
Powerful computation for predicting responsive redoxmers
76 Jiang, X.; Lafoon, S.D.; Chen, D.; Pérez-Estrada, S.; Danis, A.S.; Rodríguez-López, J.; Garcia-Garibay, M.A.; Zhu, J.; Moore, J.S.
Kinetic Control in the Synthesis of a Mobius Tris((ethynyl)[5] helicene) Macrocycle Using Alkyne Metathesis.
J. Am. Chem. Soc., 2020, 142, 6493-6498.
A twist that explains three independent electron transfers
75 Li, S.; Li, J.; Yu, H.; Pudar, S.; Li, B.; Rodríguez-López, J.; Moore, J.S.; Schroeder, C.M.
Characterizing Intermolecular Interactions in Redox-Active Pyridinium-based Molecular Junctions.
J. Electroanal. Chem., 2020, In Press
Redoxmer electrochemisttry at the atomic scale
74 Watkins, T.; Sarbapalli, D.; Counihan, M.J.; Danis, A.S.; Zhang, J.; Zhang, L.; Zavadil, K.R.; Rodríguez-López, J.
A Combined SECM and Electrochemical AFM Approach to Probe Interfacial Processes Affecting Molecular Reactivity
at Redox Flow Battery Electrodes
J. Mater. Chem. A., 2020, ASAP
You can see the electrode, now you can't see the electrode.
73 Nijamudheen, A.; Sarbapalli, D.; Hui, J.; Rodríguez-López, J.; Mendoza-Cortes, J.L.
Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity on Few-Layer Graphene Electrodes.
ACS Appl. Mater. Interfaces, 2020, 12, 19393-19401.
If the bulk is created by god, and surfaces
by the devil, interfaces exist for the bold!
72 Gossage, Z.T.; Hui, J.; Sarbapalli, D.; Rodríguez-López.
Coordinated mapping of Li
+ flux and electron transfer reactivity during solid-electrolyte interphase formation at a graphene electrode.
Analyst. 2020, 145, 2631-2638.
Playing hopscotch at the edge of graphene
71 Schorr, N.B.; Counihan, M.J.; Bhargava, R.; Rodríguez-López.
Impact of Plasmonic Photothermal Effects on The Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning
Electrochemical Microscopy.
Anal. Chem. 2020, 92, 3666-3673.
Shining light onto graphene electrocatalysis
70 Kafle, P.; Zhang, F.; Schorr, N.B.; Huang, K.Y.; Rodríguez-López, J.; Diao, Y.
Printing 2D conjugated polymer monolayers and their distinct electronic properties.
Adv. Func. Mater. 2020, 1909787.
Of thin films and new cool collaborators
69 Syrek, K.; Sennik-Kubiek, A.; Rodríguez-López, J.; Rutkowska, M.; Zmudzki, P.; Hnida-Gut, K.E.;
Grudzien, J.; Chmielarz, L.; Sulka, G.D.
Reactive and morphological trends on porous anodic TiO
2 substrates obtained at different annealing temperatures.
Int. J. Hydrogen Energy, 2020, 7, 4376-4389.
We miss you Karolina!
68 Mohammad-Pour, G.S.; Hatfield, K.O.; Fairchild, D.C.; Hernandez-Burgos, K.;
Rodríguez-López, J.; Uribe-Romo, F.J.
A Solid-Solution Approach for Redox-Active Metal-Organic Frameworks with Tunable Redox Conductivity
J. Am. Chem. Soc. 2019, 141, 51, 19978-19982.
Our splash into the world of MOFs
67 Gordon, Z.; Miller, T.J.; Leahy, C.A.; Matson, E.M.; Burgess, M.; Drummond, M.J.; Popescu, C.V.; Smith, C.M.; Lord, R.L.;
; Rodríguez-López, J.; Fout, A.R.
Characterization of Terminal Iron(III)-Oxo and Iron(III)-Hydroxo Complexes Derived from O
2 Activation
Inorg. Chem. 2019, 58, 23, 15801-15811
Intriguing voltammograms included
66 Gossage, Z.T.; Hui, J.; Zeng, Y.; Flores-Zuleta, H.; Rodríguez-López, J. Probing the reversibility and kinetics of Li
+ during SEI formation and (de)intercalation on edge plane graphite using ion-sensitive scanning electrochemical microscopy
Chem. Sci., 2019, 10, 10749-10754
Li-ion, going with the flux!
65 Counihan, M.J.; Simpson, B.H.; Plaza-Dominguez, M.; Rodríguez-López, J. Towards a Piezoelectric Electroanalytical Platform for Modulating Oxygen Reduction Reactivity on Platinum
J. Electrochem. Soc. 2019, 166 (14), 677-684
Adding a shake to the operation of electrocatalysts!
64 Counihan, M.J.; Setwipatanachai, W.; Rodríguez-López, J. Interrogating the Surface Intermediates and Water Oxidation Products of Boron-Doped Diamond Electrodes with Scanning Electrochemical Microscopy
ChemElectroChem 2019, 6, 3507-351
A diamond in the ROS
63 Song, Z.; Fu, H.; Wang, J.; Hui, J.; Xue, T.; Pacheco, L.A.; Yan, H.; Baumgartner, R.; Wang, Z.; Xia, Y.; Wang, X.; Yin, L.; Chen, C.; Rodríguez-López, J.; Ferguson, A.L.; Lin, Y.; Cheng, J. Synthesis of polypeptides via bioinspired polymerization of in situ purified
N-carboxyanhydrides
PNAS 2019, 116 (22), 10658-10663
Electrochemistry to the service of polymer synthesis
62 Claudio-Cintrón, M. A.;Rodríguez-López, J. Scanning Electrochemical Microscopy with Conducting Polymer Probes: Validation and Applications
Anal. Chim. Acta 1069 (2019) 36-46
Of ions and electrons: PEDOT to the rescue of SECM!
61 Li, B.; Yu, H.; Montoto, E.C.; Liu, Y.; Li, S.; Schwieter K.; Rodríguez-López, J.; Moore, J.S.; Schroeder, C.M. Intrachain Charge Transport through Conjugated Donor-Acceptor Oligomers
ACS Appl. Electron. Mater. 2019, 1 (1), pp 7-12.
From electronics to electrochemistry
60 Hui, J.; Gossage, Z.T.; Sarbapalli, D.; Hernández-Burgos, K.; Rodríguez-López, J. Advanced Electrochemical Analysis for Energy Storage Interfaces
Anal. Chem. 2019, 91 (1), 60-83.
Interfaces: The no man's land of batteries.
59 Schorr, N.B.; Hui, J.; Rodríguez-López, J. Electrocatalysis on ultra-thin 2D electrodes: New concepts and prospects for tailoring reactivity
Curr. Opin. Electrochem. 2019, 13, 100-106.
Catalysis at the limit of when the electrode is the interface.
58 Hui, J.; Schorr, N.B.; Pakhira, S.; Qu, Z.; Mendoza-Cortes, J.L.; Rodríguez-López, J. Achieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphase
J. Am. Chem. Soc. 2018, 140(42), 13599-13603.
Potassium intercalation the "Speedy Gonzalez" way: 10,000 times faster
57 Lawrence, M.J.; Celorrio, V.; Shi, X.; Wang, Q.; Yanson, A.; Adkins, N.J.E.; Gu, M.; Rodríguez-López, J.; Rodríguez, P. Electrochemical Synthesis of Nanostructured Metal-doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes
ACS Appl. Energy Mater. 2018, 1(10), 5233-5244.
New materials engineering for oxygen evolution
56 Gossage, Z.T.; Hernandez-Burgos, K.; Moore, J.S.; Rodríguez-López, J. Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids
ChemElectroChem 2018, 5(20), 3006-3013.
Single particle psychotherapy: tracking the life cycle of lonely battery particles with SECM
The Cover Feature illustrates single-particle nanoelectrochemical and spectroelectrochemical electrolysis experiments on individual redox-active colloids. Elucidating the nanoscopic origin of macroscopic performance issues in energy storage materials is key to creating safer, longer-lasting, and more efficient batteries.
55 Baran, M.J.; Braten, M.N.; Montoto, E.C.; Gossage, Z.T.; Ma, L.; Chenard, E.; Moore, J.S.; Rodríguez-López, J.; Helms, B.A. Designing Redox-Active Oligomers for Crossover-Free, NonAqueous Redox-Flow Batteries with High Volumetric Energy Density
Chem. Mater. 2018, 30(11), 3861-3866.
Size-exclusion flow batteries by design. A great collaborative work!
54 Schorr, N.B.; Jiang, A.G.; Rodríguez-López, J. Probing Graphene Interfacial Reactivity via Simultaneous and Co-Localized Raman-SECM Imaging and Interrogation
Anal. Chem. 2018, 90(13), 7848-7854.
SECM, Raman, and the pursuit of multimodal single site analysis
Cover art for Analytical Chemistry Vol 90, Issue 13. Represented in the cover for this issue is how colocalized Raman spectroscopy and scanning electrochemical microscopy correlate single-site electrochemical reactivity to surface structure in real-time and through versatile imaging.
53 Montoto, E.C.; Cao, Y.; Hernandez-Burgos, K.; Sevov, C.S.; Braten, M.N.; Helms, B.A.; Moore, J.S.; Rodríguez-López, J. Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers
Macromolecules 2018, 51(10) 3539-3546
For redox stability of polymers, every carbon counts!
Cover art for Macromolecules Vol 51, Issue 10. Represented in the cover for this issue is how computational and molecular design of soluble redox-active polymers guides the choice of tether length for improved charged state stability, redox reversibility, and energy storage performance.
52 Schorr, N.B.; Gossage, Z.T.; Rodríguez-López, J. Prospects for Single-Site Interrogation using In Situ Multimodal Electrochemical Scanning Probe Techniques
Curr. Opin. Electrochem. 2018, 8, 89-95.
Use all the techniques! At once! Wao such review!
51 Hui, J.; Pakhira, S.; Bhargava, R.; Barton, Z. J.; Zhou, X.; Chinderle, A. J.; Mendoza-Cortes, J. L.; Rodríguez-López, J. Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable yet Electronically Transparent Electrodes.
ACS Nano 2018, 12(3), 2980-2990.
Electocatalytic coupling across graphene interface
50 Krumov, M. R; Simpson, B. H.; Counihan, M. J.; Rodríguez-López, J.In Situ Quantification of Surface Intermediates and Correlation to Discharge Products on Hematite Photoanodes using a Combined Scanning Electrochemical Microscopy Approach.
Anal. Chem. 2018, 90(5), 3050-3057.
Detecting key intermediates the SECM way during water oxidation on Hematite, a prospect solar photoanode
49 Burgess, M.; Hernandez-Burgos, K.; Schuh, J. K.; Davila, J.; Montoto, E. C.; Ewoldt, R. H.; Rodríguez-López, J. Modulation of the Electrochemical Reactivity of Solubilized Redox Active Polymers via Polyelectrolyte Dynamics.
J. Am. Chem. Soc. 2018, 140(6), 2093-2104.
Polyelectrolyte dynamics meet soluble redox-polymers!
48 Kromer, M. L.; Monzo, J.; Lawrence, M.; Kolodziej, A.; Gossage, Z. T.; Simpson, B. H.; Morandi, S.; Yanson, A.; Rodríguez-López, J.; Rodríguez, P. High Throughput Preparation of Metal Oxide Nanocrystals by Cathodic Corrosion and Their Use as Active Photocatalysts.
Langmuir. 2017, 33(46), 13295-13302.
Easy way to make photocatalyst nanoparticles. Just add water and an AC waveform!
47 Hernandez-Burgos, K.; Barton, Z. J.; Rodríguez-López, J. Finding Harmony between Ions and Electrons: New Tools and Concepts for Emerging Energy Storage Materials.
Chem. Mater. 2017, 29(21), 8918-8931.
Electrons, Ions, Action! Such Perspective, wow.
Cover art for the Chemistry of Material Vol 29, Issue 21. Represented in the cover for this issue is the opening for Brahms Opus 90 (Symphony No. 3) played through redox polymers, particles, and ions, which serve as notes that highlight our interest in energy storage.
46 Iyer, V. A.; Schuh, J. K.; Montoto, E. C.; Pavan Nemani, V.; Qian, S.; Nagarjuna, G.; Rodríguez-López; Ewoldt, R. H.; Smith, K. C., Assessing the Impact of Electrolyte Conductivity and Viscosity on the Reactor Cost and Pressure Drop of Redox-Active Polymer Flow Batteries.
J. Power Sources 2017, 361, 334-344.
Applying experimental conditions to techno-economic modeling
45 Gossage, Z.T.; Schorr, N.B.; Hernandez-Burgos, K.; Hui, J.; Simpson, B.H.; Montoto, E.C.; Rodríguez-López, J. Interrogating Charge Storage on Redox Active Colloids via Combined Raman Spectroscopy and Scanning Electrochemical Microscopy
Langmuir 2017, 33(37), 9455-9463.
SECM or Raman: why not both?
Cover art for the Langmuir special issue Fundamental Interfacial Science for Energy Applications.
44 Montoto, E.C.; Nagarjuna, G.; Moore, J.S.; Rodríguez-López, J. Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of a Size-Exclusion Approach
J. Electrochem. Soc. 2017, 164(7), A1688-A1694.
Preventing crossover in porous separators by size-excluding polymers
43 Barton, Z. J.; Hui, J.; Schorr, N. B.; Rodríguez-López, J. Detecting Potassium Ion Gradients at a Model Graphitic Interface.
Electrochim. Acta, 2017, 241, 98-105.
Isolating Flux of Potassium Ions from Total Substrate Activity
42 Barton, Z. J.; Rodríguez-López, J. Fabrication and Demonstration of Mercury Disc-Well Probes for Stripping-Based Cyclic Voltammetry Scanning Electrochemical Microscopy (CV-SECM).
Anal. Chem., 2017, 89, 2716-2723.
Stripping-Based Ionic Imaging with Hg Disc-Well SECM Probes
41 Barton, Z. J.; Rodríguez-López, J. Cyclic Voltammetry Probe Approach Curves (CV-PACs) with Alkali Amalgams at Mercury Sphere-Cap Scanning Electrochemical Microscopy (SECM) Probes.
Anal. Chem., 2017, 89, 2708-2715.
Theory and Guidelines for Stripping-Based CV-SECM
40 Burgess, M.; Chenard, E.; Hernandez-Burgos, K.; Gavvalapalli, N.; Assary, R.S.; Hui, J.; Moore, J.S.; Rodríguez-López, J. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers
Chem. Mater., 2016, 28, 7362-7374.
-This publication was highlighted in the ACS Energy Editorial "Redox Flow Batteries"
Exploring Structure Chemical Interactions for Second Generation Polymers
39 Burgess, M.; Moore, J.S.; Rodríguez-López, J. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.
Acc. Chem. Res., 2016, 49 (11), 2649-2657.
A New Solution for Energy Storage
Cover art for the Accounts of Chemical Research special issue
38 Gossage, Z.T.; Simpson, B.H.; Schorr, N.B.; Rodríguez-López, J. Soft Surfaces for Fast Characterization and Positioning of Scanning Electrochemical Microscopy Nanoelectrode Tips.
Anal. Chem., 2016, 88,9897-9901.
A Fast Approach to Nanoelectrochemistry
37 Montoto, E.C.; Gavvalapalli, N.; Hui, J.;Burgess, M.; Sekerak, N.M.; Hernandez-Burgos, K.; Wei, T.; Kneer, M.; Grolman, J.M.; Cheng, K.J.; Lewis, J.A.; Moore, J.S.; Rodríguez-López, J.
Redox Active Colloids as Discrete Energy Storage Carriers.
J. Am. Chem. Soc., 2016, 138, 13230-13237.
Versatile Nanoelectrochemistry for Energy Storage
36 Zhou, X.; Gossage, Z.T.; Simpson, B.H.; Hui, J.; Barton, Z.J.; Rodríguez-López, J.
Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO2 Thin Films Modified by Sub-Surface Al Nano-Dimers.
ACS Nano, 2016, 10, 9346-9352.
A closer chemical look at metal nanoparticle-enhanced photoelectrochemistry
35 Hui, J.; Zhou, X.; Bhargava, R.; Chinderle, A.; Zhang, J.; Rodríguez-López, J.
Kinetic Modulation of Outer-Sphere Electron Transfer Reactions on Graphene Electrode with a Sub-surface Metal Substrate.
Electrochimica Acta, 2016, 211, 1016-1023.
Enhancing interfacial reactivity through the thinnest electrode
34 Plaza, M.; Huang, X.; Ko, J.Y.P.; Brock, J.D.; Shen, M.; Simpson, B.H.; Rodríguez-López, J.; Ritzert, N.L.; Abruna, H.D.; Letchworth-Weaver, K.; Gunceler, D.; Arias, T.A.; Schlom, D.G.
Structure of the Photo-Catalytically Active Surface of SrTiO
3.
J. Am. Chem. Soc., 2016, 138 (25), 7816-7819
A surface-sensitive versatile approach to photocatalysis
33 Burgess, M.; Hernandez-Burgos, K.; Cheng, K.J.; Moore, J.S.; Rodríguez-López, J.* Impact of Electrolyte Composition on the Reactivity of a Redox Active Polymer Studied through Surface Interrogation and Ion-Sensitive Scanning Electrochemical Microscopy.
Analyst, 2016, 141, 3842-3850. Invited contribution to Emerging Investigators issue.
Elucidating optimal ionic interactions that enhance polymer reactivity for applications in redox flow batteries
32 Hui, J.; Burgess, M.; Zhang, J.; Rodríguez-López, J.* Layer Number Dependence of Li+ Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution. ACS Nano, 2016, 10, 4248-4257.
The unique behavior of Few Layer Graphene toward Li-ion intercalation
31 Barton, Z.J.; Rodríguez-López, J.* Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials.
Anal. Bioanal. Chem., 2016, 408, 2707-2715. Invited Contribution to Youn Investigators in Analytical and Bioanalytical Science.
Versatile ionics for next-generation batteries
30 Simpson, B.H.; Rodríguez-López, J.* Electrochemical imaging and redox interrogation of surface defects on operating SrTiO
3 photoelectrodes.
J. Am. Chem. Soc., 2015, 137, 14865-14868.
First use of nanoelectrodes to see surface defects influencing adsorbate reactivity in situ
29 Burgess, M.; Hernandez-Burgos, K.; Simpson, B.H.; Lichtenstein, T.; Avetian, S.; Nagarajuna, G.; Cheng, K.J.; Moore, J.S.; Rodríguez-López, J.*, Scanning Electrochemical Microscopy and Hydrodynamic Voltammetry Investigation of Charge Transfer Mechanisms on Redox Active Polymers.
Journal of The Electrochemical Society, 2016, 163 (4) H3006-H3013. Invited Contribution for the Special Issue Honoring Allen J. Bard.
-This publication was awarded the Norman Hackerman Young Author award from the Electrochemical Society and also was selected as the cover figure.
A First Look on How Soluble Polymers React at Electrodes
Cover figure for the JES focus issue
28 Sevov, C.S.; Brooner, R.E.M.; Chenard, E.; Assary, R.S.; Moore, J.S.; Rodríguez-López.J.; Sanford, M.S.* Evolutionary Design of Low Molecular Weight Organic Anolytes for Applications in Nonaqueous Redox Flow Batteries.
J. Am. Chem. Soc. 2015, 137 (45), 14465-14472 *ACS Editors' Choice.
Designing and evaluating robust molecules for redox flow
27 Simpson, B.H.; Rodríguez-López, J.* Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces.
Anal. Methods, 2015, 7, 7029-7041. Invited Contribution for the Emerging Investigator Issue.
Elucidating the Fate and Reactivity of Surface Photochemical Species
26 Simpson, B.H.; Rodríguez-López*. Redox titrations via Surface Interrogation Scanning Electrochemical Microscopy at an Extended Semiconducting Surface for the Quantification of Photogenerated
Adsorbed Intermediates.
Electrochim. Acta, 2015, 179, 74-83. Invited Contribution After the 65th ISE Meeting in Lausanne, Switzerland
Unleashing the Spatial and Temporal Power of SI-SECM for Photocatalysis
25 Duarte-Guevara, C.; Swaminathan, V.V.; Burgess, M.; Reddy Jr. B.; Salm, E.M.; Liu, Y.-S.; Rodríguez-López; Bashir, R. Quasi-Reference Electrodes for Robust ISFET Operation.
Analyst, 2015, 140, 3630-3641.
PPY does it - Mark
24 Cristarella, T.; Chinderle, A.; Hui, J.; Rodríguez-López*. Single Layer Graphene as a Stable and Transparent Electrode for Non-Aqueous Radical Annihilation Electrogenerated Chemiluminescence.
Langmuir 2015, 31, 3999-4007
The World's Thinnest Electrode put to the Challenge of High Energy Electrochemistry
23 Minguzzi, A.; Battistel, D.; Rodríguez-López; Vertova, A.; Rondinini, S.; Bard, A.J.; Daniele, S. Rapid characterization of oxygen evolving electrocatalyst spot arrays by the substrate generation/tip collection mode of SECM with decreased O
2 diffusion layer overlap.
J. Phys. Chem. C 2015, 119, 2941-2947.
A Powerful Method for Quantifying Localized Oxygen Evolution
22 Gavvalapalli, N.; Hui, J.; Cheng, K.; Lichtenstein, T.; Shen, M.; Moore, J.S.; Rodríguez-López*. Impact of Redox Active Polymer Molecular Weight on the Electrochemical Properties and
Transport Across Porous Separators in Non-Aqueous Solvents.
J. Am. Chem. Soc. 2014, 136, 16309-16316.
A New Strategy for High Performance Non Aqueous Flow Batteries
21 Barton, Z.J.; Rodríguez-López*. Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media.
Anal. Chem. 2014, 86, 10660-10667.
Imaging Ionic Reactivity for Imagining New Batteries
* = corresponding author
20 Ritzert, N.L.; Li, W.; Tan, C.; Rodriguez-Calero, G.G.; Rodríguez-López; Hernandez-Burgos, K.; Conte, S.; Parks, J.J.; Ralph, D.C.; Abruña, H.D. Single layer graphene as an electrochemical platform.
Faraday Discuss. 2014, 172, 27-45.
19 Ritzert, N.L.; Rodríguez-López, J.; Tan, C.; Abruña, H.D. Kinetics of Interfacial Electron Transfer at Single Layer Graphene Electrodes in Aqueous and Non-Aqueous Solutions.
Langmuir, 2013, 29(5), 1683-1694.
18 Rodríguez-López, J.; Videa-Vargas, M. Study of the Ion Transfer of Quaternary Ammonium Ions by SWV.
J. Mex. Chem. Soc. 2012, 56(4), 417-425.
17 Rodríguez-López, J.; Shen, M.; Nepomnyashchii, A.B.; Bard, A.J. Scanning Electrochemical Microscopy Study of Ion Annihilation Electrogenerated Chemiluminiscence of Rubrene and [Ru(bpy)3]2+.
J. Am. Chem. Soc. 2012, 134, 9240-9250.
16 Zigah, D.; Rodríguez-López, J.; Bard, A.J. Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy.
Phys. Chem. Chem. Phys. 2012, 14, 12764-12772.
15 Rodríguez-López, J.; Ritzert, N.L.; Mann, J.A.; Tan, C.; Dichtel, W.R.; Abruña, H.D. Surface Diffusion of Electrochemically Active Tripodal Motifs on Graphene, a Scanning Electrochemical Microscopy Approach.
J. Am. Chem. Soc. 2012, 134, 6224-6236.
14 Tan, C.; Rodríguez-López, J.; Parks, J.J.; Ritzert, N.L.; Ralph, D.C.; Abruña, H.D. The Examination of the Reactivity of Graphene Imperfections Using Scanning Electrochemical Microscopy.
ACS Nano 2012, 6, 3070-3079.
13 Mann, J.A.; Rodríguez-López, J.; Abruña, H.D.; Dichtel, W.R. Multivalent bonding motifs for the noncovalent functionalization of graphene.
J. Am. Chem. Soc. 2011, 133, 17614-17617.
12 Rodríguez-López, J.; Minguzzi, A.; Bard, A.J. The reaction of various reductants with oxide films on Pt electrodes as studied by the Surface Interrogation Mode of Scanning Electrochemical Microscopy (SI-SECM). Possible validity of a Marcus relationship.
J. Phys .Chem. C. 2010, 114, 18645-18655.
11 Wang, Q.; Rodríguez-López, J.; Bard, A.J. Evaluation of Chemical Reactions from Two Electrogenerated Species in Picoliter Volumes by Scanning Electrochemical Microscopy.
Chem. Phys. Chem. 2010, 11, 2969-2978.
10 Shen, M.; Rodríguez-López, J.; Huang, J.; Liu, Q.; Zhu, X.-H.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of Dithienylbenzothiadiazole Differential Reactivity of Donor and Acceptor Groups and Simulations of Radical Cation — Anion and Dication — Radical Anion Annihilations.
J. Am. Chem. Soc. 2010, 132, 13453-13461.
9 Shen, M.; Rodríguez-López, J.; Lee, Y.-T.; Chen, C.-T.; Fan, F.F.-R.; Bard, A.J.; Electrochemistry and Electrogenerated Chemiluminescence of a Novel Donor-Acceptor FPhSPFN Red Fluorophore.
J. Phys. Chem. C 2010, 114, 9772-9780.
8 Rodríguez-López, J.; Bard, A.J. Scanning Electrochemical Microscopy: Surface Interrogation of Adsorbed Hydrogen and the Open Circuit Catalytic Decomposition of Formic Acid at Platinum.
J. Am. Chem. Soc. 2010, 132, 5121-5129.
7 Wang, Q.; Rodríguez-López, J.; Bard, A.J. The Reaction of Br2 with Adsorbed CO on Pt Studied by the Surface Interrogation Mode of Scanning Electrochemical Microscopy.
J. Am. Chem. Soc. 2009, 131, 17046-17047.
6 Lin, C. L.; Rodriguez-Lopez, J.; Bard, A.J. Micropipette Delivery-Substrate Collection Mode of Scanning Electrochemical Microscopy for the Imaging of Electrochemical Reactions and the Screening of Methanol Oxidation Electrocatalysts.
Anal. Chem. 2009, 81, 8868-8877.
5 Jung, C.; Sánchez-Sánchez, C.M.; Lin, C.-L.; Rodríguez-López, J.; Bard, A.J. Electrocatalytic Activity of Pd-Co Bimetallic Mixtures for Formic Acid Oxidation Studied by Scanning Electrochemical Microscopy.
Anal. Chem. 2009, 81, 7003-7008.
4 Rodríguez-López, J.; Alpuche-Aviles, M.A.; Bard, A.J. Interrogation of Surfaces for the Quantification of Adsorbed Species on Electrodes: Oxygen on Gold and Platinum in Neutral Media.
J. Am. Chem. Soc. 2008, 130, 16985-16995.
3 Minguzzi A.; Alpuche-Aviles, M.A.; Rodriguez Lopez, J.; Rondinini, S.; Bard, A.J. Screening of Oxygen Evolution Electrocatalysts by Scanning Electrochemical Microscopy Using a Shielded Tip Approach.
Anal. Chem. 2008, 80, 4055-4064.
2 Sánchez-Sánchez, C.M.; Rodríguez-López, J.; Bard, A.J. Scanning Electrochemical Microscopy. 60. Quantitative Calibration of the SECM Substrate Generation / Tip Collection Mode and Its Use for the Study of the Oxygen Reduction Mechanism.
Anal. Chem. 2008, 80, 3254-3260.
1 Rodríguez-López, J.; Alpuche-Aviles, M.A.; Bard, A.J. Selective Insulation with Poly(tetrafluoroethylene) of Substrate Electrodes for Electrochemical Background Reduction in Scanning Electrochemical Microscopy.
Anal. Chem. 2008, 80, 1813-1818.
Rodríguez-López, J. Chapter 4: The Surface Interrogation Mode of Scanning Electrochemical Microscopy (SI-SECM): an approach to the study of adsorption and (electro)catalysis at electrodes. In Electroanalytical Chemistry, a series of advances. Vol. 24. Bard, A.J. and Zoski, C.G., Eds. 2012, CRC Press, pp. 287-352. [
Rodríguez-López, J.; Zoski, C.G.; Bard, A.J. Chapter 16. SECM applications to electrocatalysis and photocatalysis and surface interrogation. In Scanning Electrochemical Microscopy. Bard, A.J.; Mirkin, M.V., Eds. 2012, CRC Press, pp. 525-568. [
. Integratec, 15(79), Jul-Sep. 2008, p.14. [